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67

68 Summary: 

69

70  Large intraspecific functional trait variation strongly impacts many aspects of 

71 communities and ecosystems, and is the medium upon which evolution works. Yet 

72 intraspecific trait variation is inconsistent and hard to predict across traits, species, and 

73 locations. 

74  We measured within-species variation in leaf mass per area (LMA), leaf dry matter 

75 content (LDMC), branch wood density (WD), and allocation to stem area vs. leaf area in 

76 branches (branch Huber value, HV) across the aridity range of seven Australian eucalypts 

77 and a co-occuring Acacia species to explore how traits and their variances change with 

78 aridity. 

79  Within-species, we found consistent increases in LMA, LDMC and WD, and HV with 

80 increasing aridity, resulting in consistent trait coordination across leaves and branches. 

81 However, this coordination only emerged across sites with large climate differences.  

82 Unlike trait means, patterns of trait variance with aridity were mixed across populations 

83 and species. Only LDMC showed constrained trait variation in more xeric species and 

84 drier populations that could indicate limits to plasticity or heritable trait variation. 

85  Our results highlight that climate can drive consistent within-species trait patterns, but 

86 that patterns might often be obscured by the complex nature of morphological traits, 

87 sampling incomplete species ranges, or sampling confounded stress gradients.

88

89

90 Introduction: 
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91 Land plants exhibit astounding variation in both form and physiological function. The 

92 identification of ‘functional traits’ as easily measured plant attributes that are proxies for plant 

93 physiological function and performance has spurred the rise of the field of ‘plant functional 

94 ecology’ and revealed some of the key causes and consequences of plant functional diversity 

95 (Mooney et al., 1978; Field, 1988; Reich et al., 1997; Díaz et al., 2016; Ma et al., 2018). In 

96 particular, across-species studies of plant traits have revealed global ‘trait spectra’ or ‘trait 

97 syndromes’—correlations between different plant traits indicative of coordination across various 

98 aspects of plant physiology—that both illuminate trade-offs shaping plant evolution and provide 

99 powerful tools for community and ecosystem ecological studies (Wright et al., 2004; Reich, 

100 2014; Ma et al., 2018).

101 While functional ecology has largely been built on trait patterns among species, our 

102 understanding of trait variation and trait coordination within individual species remains more 

103 limited. Ecologists increasingly recognize that within-species trait variation can be a large 

104 fraction of total trait variation (Albert et al., 2010b; Siefert et al., 2015), and that within-species 

105 trait variation has large consequences for ecological and evolutionary processes (Laforest-

106 Lapointe et al., 2014; Ahrens et al., 2019a). Within-species variation in functional traits linked to 

107 stress tolerance has been increasingly used to predict plant responses to global change 

108 (Blackman et al., 2017; Ahrens et al., 2019a). Even as our appreciation of the importance of 

109 intra-specific variation grows, a mounting body of perplexing results reveals the limits to our 

110 understanding of within-species variation. For example, within-species trait responses to 

111 environmental gradients have defied generalization by proving highly trait-specific and species-

112 specific (e.g. Schulze et al., 1998; Albert et al., 2010b,a; Vilà-Cabrera et al., 2015; Rosas et al., 

113 2019), and sometimes even study specific (e.g. Martinez-Vilalta et al., 2009; Laforest-Lapointe 

114 et al., 2014). Some possible explanations for these inconsistencies are: 1) that different taxa 

115 employ different strategies of trait adjustment (Anderegg & HilleRisLambers, 2015) in which 

116 case closely related species will show more consistent trait responses, 2) that geographic stress 

117 gradients often confound multiple stressors, particularly drought and cold stress, and 3) that trait 

118 adjustments over only a portion of a species range are often subtle and hard to detect without 

119 sampling a species entire distribution (López et al., 2016).

120 The between-species trait-trait coordination (consistent correlation among multiple traits) 

121 that underpins theory about trait spectra does not necessarily hold within individual species 
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122 (Messier et al., 2017; Anderegg et al., 2018; Messier et al., 2018). For instance, a recent analysis 

123 of intra-specific trait coordination in saplings of temperate tree species found that essentially 

124 none of the canonical trait relationships behind three classic theories of trait coordination held 

125 among individuals within species (Messier et al., 2018). In another example, strong between-

126 species trait-by-environment relationships and trait coordination didn’t hold across populations 

127 within those same species in northern Spain (Rosas et al., 2019). Indeed, some important trait-

128 trait relationships can even reverse direction within- versus between-species (Anderegg et al., 

129 2018). This contrasting within- verse between-species trait coordination suggests that classical 

130 explanations of trait correlations do not necessarily hold within-species, limiting their 

131 applicability for predicting species’ functional responses to climate change. 

132 Additionally, patterns of trait variances within-species remain poorly understood. The 

133 study of trait variance (rather than trait means) has a long history in community ecology (Kraft et 

134 al., 2014) and evolutionary studies, where heritable trait variance is the necessary precondition 

135 for evolution. Yet trait variances have often been overlooked in the ecophysiological literature. 

136 Ultimately, predicting plant responses to a shifting environment requires an improved 

137 understanding of the amount of heritable trait variation, the capacity for trait plasticity, and the 

138 trait-fitness links causing evolutionary selection within a species and/or performance differences 

139 among species in a community (Richter et al., 2011; Chevin et al., 2012; Alberto et al., 2013; 

140 Franks et al., 2014; Valladares et al., 2014). As a first step towards this understanding, 

141 observations of the size and spatial patterns of trait variances in different species and between 

142 populations of the same species are critical (Molina-Montenegro & Naya, 2012; Lemke et al., 

143 2012; Siefert et al., 2015). For instance, decreased amounts of trait variation in range-edge 

144 populations of a species could indicate fundamental limits to trait plasticity or that the strength of 

145 directional selection surpasses the rate of generation of genetic diversity (e.g. immigration, 

146 mutation). Either would indicate limited potential for trait change in those populations in a 

147 changing environment. Among species, environmental stress has been predicted to constrain 

148 phenotypic plasticity (Valladares et al., 2007) but also possibly increase the expression of 

149 genetic variability in traits (Hoffmann & Merilä, 1999), and current evidence for either 

150 increasing or decreasing within-species trait variation with drought stress is weak (Siefert et al., 

151 2015). Thus, understanding trait variances may be more critical to predicting potential plant 

152 responses to climate change than trait means themselves.
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153 While many of the plant physiological traits known to be most related to drought 

154 resistance are time consuming to measure (e.g. xylem vulnerability to embolism, leaf turgor loss 

155 point), a number of morphological “soft traits” have less direct but still clear links to drought 

156 resistance and can be tractably assessed across hundreds of individuals and large geographic 

157 areas. For instance, across species, increased leaf robustness quantified by Leaf Mass per Area 

158 (LMA) and Leaf Dry Matter Content (LDMC) and stem robustness quantified by Wood Density 

159 (WD) are often associated with xeric environments because their variation is partly driven by 

160 anatomical adjustments that allow plants to maintain hydraulic function under increasingly 

161 negative xylem pressures (Schulze et al., 1998; Niinemets, 1999; Schulze et al., 2006; Chave et 

162 al., 2009; Poorter et al., 2009; John et al., 2017; Li et al., 2018b). The ratio of stem sapwood area 

163 to leaf area or Huber value (HV) reflects the balance of hydraulic supply (sapwood area) relative 

164 to hydraulic demand (leaf area), with high HV typically indicating increased hydraulic efficiency 

165 and thus increased drought avoidance (Tyree & Ewers, 1991; Mencuccini & Grace, 1995; Li et 

166 al., 2019; Mencuccini et al., 2019). Even though these morphological traits integrate numerous 

167 drought- and non-drought-related anatomical traits, multiple tree species have been found to 

168 adjust at least one of these traits depending on water availability (Martinez-Vilalta et al., 2009; 

169 Anderegg & HilleRisLambers, 2015; Rosas et al., 2019). Moreover, in recent studies of 

170 Eucalyptus species, changes in LMA, HV and WD were associated with more physiologically 

171 direct mechanisms of drought tolerance such as changes in xylem anatomy and vulnerability to 

172 embolism (Pfautsch et al., 2012; Zolfaghar et al., 2015; Pfautsch et al., 2016; Li et al., 2018b; 

173 Pritzkow et al., 2019), suggesting that they are relevant markers of drought resistance in  

174 eucalypts. These traits are also central to our understanding of plant carbon allocation and carbon 

175 stocks. For example, LMA is a key model parameter in many vegetation models for translating 

176 carbon allocated to leaves into leaf area and WD is a critical component of carbon stock 

177 estimation and prediction (Nabuurs et al., 2008; Kovenock & Swann, 2018).

178 Within-species trait variation at landscape-scales is the result of some unknown 

179 combination of genetic or ‘ecotypic’ variation among populations (G effects), plastic adjustments 

180 to environmental gradients (E effects) and GxE interactions. Definitively disentangling these 

181 components requires experiments such as provenance trials or common gardens (McLean et al., 

182 2014; Ahrens et al., 2019b). However, because genetic variation among species is traditionally 

183 larger than ecotypic variation within species, trait variation among related species in their native 
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184 habitat is often ascribed primarily to G effects. Thus, by sampling within-species and across 

185 closely-related species, both genetic + plastic trait changes and primarily genetic trait changes 

186 can be explored.

187 Here, we examine within-species variation in leaf and stem robustness and allocation 

188 within closely related tree species across large gradients in water availability in the absence of 

189 confounding freezing stress. We present a controlled test of predictions about intraspecific trait 

190 variation across nested scales of organization, focusing on trait variation across aridity gradients 

191 in Western Australia and Tasmania. Further, we minimize differences in species life history by 

192 holding phylogenetic history relatively constant for seven core species (‘eucalypts’ from the 

193 closely related Eucalyptus and Corymbia genera). We compare these patterns within eucalypts to 

194 an unrelated species (Acacia acuminata) that co-occurs with the most xeric sampled eucalypt.  

195 The specific questions we ask are:

196 1. Do leaf and stem tissues, and leaf vs stem allocation show consistent relationships with 

197 water availability across the full aridity range of multiple closely related species? Or are 

198 trait-environment relationship context dependent (e.g. present in xeric species but not in 

199 mesic species)? 

200 2. Do species consistently show coordination between leaf and stem robustness, and leaf to 

201 stem allocation, and if so at what scale does this coordination emerge?

202 3. Is the total amount of within-species variation in leaf and stem traits more constrained in 

203 dry sites (both within species across sites and across sister species with different aridity 

204 niches), indicating potential limits to trait change in a drying climate? 

205

206 Given their association with drought resistant phenotypes, we expected LMA, LDMC, WD 

207 and HV to increase with aridity, resulting in coordinated trait changes across tissues. We 

208 predicted consistent trait-environment relationships among closely related eucalypts, regardless 

209 of whether they were mesic or xeric, but potentially less consistency between the eucalypts and 

210 an unrelated Acacia. Alternatively, if trait adjustments are not consistent among eucalypts, we 

211 predicted that xeric eucalypts and the xeric Acacia would show stronger trait patterns than mesic 

212 eucalypts due to the increased biogeographic importance of drought stress in harsh environments 

213 (MacArthur, 1972).  In addition, assuming ongoing directional selection and a limit to both 

214 plasticity and genetic variation near each species’ dry range edge, we predicted that within-
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215 species variation in these traits would decrease in higher aridity populations within a species. If 

216 plasticity is constrained in harsh environments, we also predicted that xeric species would show 

217 less within-species trait variation than mesic species. 

218

219 Methods:

220 Study site

221 We collected trait data along two temperate aridity gradients (Figure S1), one in 

222 southwest Western Australia (sampled November 2014) and one in Tasmania (sampled February 

223 2016). Along each gradient, we identified three or four dominant eucalypt tree species (from the 

224 Eucalyptus or Corymbia genera of the Myrtaceae family) that are easily identified in the field 

225 and do not widely form cryptic hybrids or have notable subspecies within the sampled regions. In 

226 Western Australia, we sampled Eucalyptus marginata Donn ex Sm., Eucalyptus salmonophloia 

227 F.Muell., and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson. We also 

228 opportunistically sampled the non-eucalypt Acacia acuminata Benth., which broadly co-occurs 

229 with the most xeric sampled eucalypt, E. salmonophloia. In Tasmania we sampled Eucalyptus 

230 amygdalina Labill., Eucalyptus obliqua L’Hér., Eucalyptus ovata Labill., and Eucalyptus 

231 viminalis subsp. viminalis Labill, all of which cover the majority of their global precipitation 

232 range within Tasmania. All focal species are evergreen, dominant or co-dominant canopy trees 

233 with the exception of Acacia acuminata, which is a small tree/tall shrub. All focal species are 

234 common in multiple vegetation types and are both habitat generalists (i.e. not riparian-affiliated) 

235 and soil type generalists with the exception of E. marginata, which is a habitat generalist but 

236 principally occurs on ironstone-derived soils. Collectively, sampled sites spanned a mean annual 

237 precipitation range of 328 to 1574mm/year (328 to 1189 mm in Western Australia, 584 to 1574 

238 mm in Tasmania). Mean annual temperature spanned 8-20°C and elevation ranged from 24-620 

239 m.a.s.l, with no site experiencing significant frost (mean coldest month minimum temperature 

240 >0°C for all sites). Average site climate, soil, DBH (diameter at breast height as a proxy for tree 

241 size) and stand basal area (measured for each tree with a variable radius forestry wedge prism, 

242 Tasmania only) can be found in Table S1. Sampled tree size and (where measured in Tasmania) 

243 stand Basal Area did not vary strongly with aridity for most species (Table S1). Climate data for 

244 sampled plots, including mean annual precipitation (PPT), potential evapotranspiration (PET), 

245 and moisture deficit (MD = PET – PPT), were extracted from the CHELSA 30 arc second 
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246 (~1km) gridded climate database of 1979-2013 climatologies (Karger et al., 2017). Aridity Index 

247 (P/PET) was also calculated but found to be almost perfectly collinear with MD(Figure S2). Soil 

248 properties including soil depth and regolith depth, as well as % sand, silt and clay, total nitrogen 

249 by mass, total phosphorus by mass, average water holding capacity, bulk density, and effective 

250 cation exchange capacity (averaged over the top 60cm soil depth) were downloaded from the 3 

251 arcsecond resolution (~90m) Soil and Landscape Grid of Australia (Grundy et al., 2015), using 

252 the slga R package (O'Brien 2019). Because soil properties were strongly collinear, we 

253 performed a Principal Component Analysis (PCA) on the soil variables and used the first two 

254 principal components (PCs) in analyses. The first PC explained 67% of soil variation and was 

255 interpreted as ‘soil fertility’ because it loaded strongly (>0.3) with everything except depth of 

256 regolith, depth of soil and water holding capacity. The second PC captured 12% of variation, 

257 loaded strongly with water holding capacity and soil depth and was interpreted as ‘soil depth’.

258

259 Trait measurement

260 We measured branch wood density (WD, g dry mass per cm3 fresh volume), leaf mass 

261 per area (LMA, g dry mass per cm2 fresh leaf area) and leaf dry matter content (LDMC, g dry 

262 mass per g fresh mass) as metrics of stem and leaf robustness, and terminal branch Huber value 

263 (HV), the ratio of sapwood area to leaf area (mm2 per cm2), as a metric of investment in water 

264 transport versus light capture. Trait measurements were collected in a nested hierarchical design 

265 with four to five sites sampled per species to capture broad climate gradients, three plots per site 

266 to capture topographic/edaphic variation, five trees per plot to capture within-population 

267 variation, and three samples per tree to capture within-individual variation (Figure S1). For each 

268 species, four to five forestry reserves, National Parks, State Forests, Nature Reserves, or 

269 Conservation Areas were selected to cover as much of each species’ precipitation range as 

270 possible. Each species’ precipitation range was determined using collection locations of 

271 herbarium specimens, initially downloaded from Australia Virtual Herbarium 

272 (www.avh.chah.org.au) for identifying sampling locations and later validated with expanded 

273 occurrence records from the Atlas of Living Australia (see species climate distributions and 

274 sampling coverage in Figure S3, ala.org.au). Edaphic variation within sites was captured by 

275 locating three plots that were >500 m but <5 km apart and each containing more than five 

276 individuals of the focal species within a 30 m radius.  In each of the three plots, we sampled 
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277 within-population variation by collecting three sun exposed branches from the north side of each 

278 of five mature, healthy individuals using pole clippers and pull ropes.  Sampled individuals in a 

279 plot were apparently healthy, canopy dominant trees at least 5m but less than 60m apart. Our 

280 sample design resulted in 180-225 trait measurements per species.

281 From each branch, we collected a section ~8 mm in diameter for WD measurement, and a 

282 terminal branch (first order branch collected at the point of branching) for leaf and HV 

283 measurements. We selected terminal branches (typically ~1mm in diameter, see Table S2 for 

284 details) with intact ‘mature’ leaves (i.e. fully expanded, not soft green new growth), though most 

285 of the study species flush sporadically throughout the year (Davison & Tay, 1989; Heatwole et 

286 al., 1997) so it was not possible to perfectly control for leaf age. Sampling periods (Nov. in 

287 Western Australia and Feb. in Tasmania) avoided large leaf flush events for all species with the 

288 exception of Corymbia calophylla at two of its five sample sites. Samples were rehydrated in 

289 moist ziplock bags in a cooler for at least 12 hours prior to trait measurement (Pérez-

290 Harguindeguy et al., 2013). Bark was peeled from branch sections and WD quantified from 

291 segments roughly 7 cm in length by dividing dry mass (following 72+ hrs drying at 70°C). WD 

292 was weakly related to branch diameter for six species (Likelihood Ratio Test of a linear mixed 

293 effects model with a fixed effect for diameter and site and random effects for plot and tree was 

294 significant at alpha = 0.05 compared to an identical model without diameter), so diameter was 

295 included as a covariate in models of WD for these species. 

296 All leaves subtending the selected terminal branch were collected for measurement of 

297 leaf area, LMA and LDMC. Total fresh one-sided leaf area (including petioles) of terminal 

298 branch samples was measured with a flatbed scanner and ImageJ image processing software 

299 (Schneider et al., 2012). Leaves were then oven dried at 70°C to a constant weight (typically 48+ 

300 hrs) and their dry mass measured. Terminal twig basal diameter was measured just above the 

301 swelling at the branch base after gently peeling back bark (except in A. acuminata, where bark 

302 was difficult to distinguish from woody tissue). For each terminal branch HV, LMA, and LDMC 

303 was calculated. Multivariate trait outliers were visually diagnosed by plotting all traits against 

304 each other for each species and removed (n<10 per trait), as were LMA and LDMC values from 

305 still expanding leaves (<10% of measurements).

306

307 Statistics
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308

309 Q1 – Trait-aridity relationships: We tested for significant trait-environment relationships using 

310 information-theory based model selection. For each species, we fit candidate linear mixed effects 

311 models relating each trait to plot mean annual PPT, PET, MD, soil fertility (soil PC1), or soil 

312 depth (soil PC2) with plot and tree random intercepts. We also included tree DBH (measured for 

313 all species except for often multi-stemmed Acacia acuminata and for E. salmonophloia which 

314 was missing measurements from two site) and the stand Basal Area around the focal tree 

315 (measured for Tasmanian species with a wedge prism) as potential individual-level covariates 

316 where measured. Because soil and climate variables were often collinear (Figure S2) and most 

317 soil and climatic variation occurred among sites (n=4-5 per species) we only included models 

318 with single soil/climate predictors and not multiple predictors or interactions to avoid overfitting. 

319 We then compared the candidate models and a null model (with only plot and tree random effect) 

320 using Akiake’s Information Criterion corrected for small sample sizes (AICc) and selected the 

321 model with the fewest parameters that was within 2 AICc of the model with the lowest AICc. We 

322 quantified statistical significance of this model compared to the null model using Likelihood 

323 Ratio Tests (LRT). Where a soil variable proved the best trait predictor, we also tested the 

324 significance of the best climate model because soil and climate variables were often strongly 

325 collinear (Figure S2). We visually checked the model fit and the validity of model assumptions 

326 (e.g. normality of residuals, normality of random effects) using a variety of model criticism plots 

327 (see code at https://github.com/leanderegg/EucTraits).

328

329 Q2 – Trait coordination: We assessed trait-trait covariation using multiple approaches. First, for 

330 each species we tested for significant Pearson correlations between tree-level averaged traits for 

331 all trait pairs and visualized the relationships with Standardized Major Axis (SMA) regressions. 

332 Next, we assessed the distribution of trait-trait correlations for hierarchically nested data subsets 

333 to assess at what level trait coordination emerges. For each trait pair for each species, this 

334 involved calculating the Pearson correlations across the replicate branches within each tree, 

335 across tree averages in each plot, across plot averages in each site, and across site averages, for 

336 all eight sampled species. Lastly, we assessed the dominant mode of trait covariation across all 

337 traits and species. We performed a Principal Component Analysis (PCA) on all branch-level trait 

338 measurements with complete trait data (1400 branches), and assessed the trait loadings along the 
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339 first and second PC axes. We then calculated the PC score for all site-averaged trait values, and 

340 assessed whether any PC related to site MD across species using a linear mixed effect model 

341 including a fixed effect of MD and species random slopes and intercepts.

342

343 Q3 – Constrained variance at high aridity: We first examined whether more xeric species showed 

344 less intraspecific trait variation than mesic species. For each species and trait, we quantified the 

345 amount of trait variation at each nested scale using variance decomposition by fitting a linear 

346 mixed effect model with a fixed intercept and random effects for site, plot, and tree. In this 

347 formulation, the random effect variance parameters represent the between-site, between-plot in 

348 site, and between-tree in plot variance (respectively), with the residual variance representing 

349 samples within tree. We then characterized species’ aridity niche based on occurrence records in 

350 the Atlas of Living Australia, extracting the MD values for each occurrence from the CHELSA 

351 gridded climatologies and calculating the range center (median MD) and dry range edge (90th 

352 percentile MD) of each species’ climatic distribution. We then used the species’ range center or 

353 dry range edge as an index of how mesic or xeric each species’ range is. To test for among-

354 species patterns, we extracted the variance parameters for each eucalypt species (excluding 

355 Acacia acuminate) and used linear models to relate species total trait variance (sum of all 

356 variance components for a trait) to the species’ dry range edge. We also tested whether 

357 individual variance components decreased with increasing aridity by fitting linear models 

358 relating species variance components to each species’ driest range edge plus a fixed effect for 

359 variance component (between-site, between-plot, between-tree, or within-tree) and a component-

360 by-MD interaction. 

361 To test for decreasing trait variation with aridity within species (i.e. across populations), 

362 we used AICc to determine whether the best trait-aridity mixed effect model (from Q1) for each 

363 species and trait was improved by allowing the variance to change as either a power or 

364 exponential function of the dominant climate variable, or to assume a different value for each 

365 site. If AICc and LRTs suggested that a non-constant variance function improved the trait-

366 climate model, we classified whether the variance increased with aridity, decreased with aridity, 

367 or showed variation between sites that was not aridity-related (i.e. the model with different 

368 variances per site was the best model). 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

369 All analyses were performed in the R statistical environment (R Core Team, 2019), 

370 version 3.6.0). Mixed effects models were fit using the lme4 and lmerTest packages (Bates et al., 

371 2015; Kuznetsova et al., 2017) for fixed variance models, or the nlme package for more 

372 complicated variance structures (Pinheiro et al., 2019). SMA regressions were fit using the 

373 lmodel2 package (Legendre, 2014). All data and analysis code is available in the Github 

374 repository associated with this paper (https://github.com/leanderegg/EucTraits). Data are also 

375 available in the Dryad data repository (DOI: https://doi.org/10.6078/D1QQ5X).

376

377 Results

378 Do traits respond to aridity?

379 For the majority of our examined species, most traits shifted in a way consistent with 

380 greater drought resistance (increased WD, LMA, LDMC and HV) in higher aridity plots (Figure 

381 1). All species showed significant trait-by-environment relationships for LMA and LDMC and 

382 seven of the eight species showed significant trait-by-environment relationships for WD and HV 

383 (Table S3). A measure of aridity (PPT, PET or MD) was the best predictor in 19 of 32 trait-by-

384 environment relationships, soil fertility in 9 of 32 and soil depth in 2 of 32. However, in all but 

385 one of the trait-by-environment relationships where soil quality or depth was the best predictor, 

386 precipitation was collinear to that soil variable and also a significant, if worse, predictor (Table 

387 S3). Precipitation, potential evapotranspiration, moisture deficit and soil fertility were correlated 

388 across plots for many, but not all species (Figure S2). Tree DBH was never a significant trait 

389 predictor in final models, and stand Basal Area was only included as a covariate for one trait 

390 (LMA) for two of the Tasmanian species (Table S3). Across the seven eucalypts, species mean 

391 trait values also showed significant or marginally significant positive relationships with species 

392 median MD, though for WD and LMA this was driven primarily by the driest species (Figure 

393 S4).

394

395 Are trait responses coordinated across tissues?

396 Ubiquitous trait-by-environment relationships resulted in coherent trait coordination 

397 across leaf and stem tissue, and coordination between leaf robustness and increased HV within 

398 species (Figure 2). However, while consistent and often significant, these within-species trait 

399 correlations were typically weak, with the mean within-species trait correlation being <0.5 for all 
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400 trait pairs except LMA and LDMC. Across tree-level trait averages, the majority of species 

401 showed significant correlations between both WD and LMA (mean correlation of 0.33) and WD 

402 and LDMC (mean correlation of 0.38; Figure 2a, 2b), though these were typically less strong 

403 than the correlations between LMA and LDMC (mean correlation of 0.74; Figure 2c). Both leaf 

404 traits were also positively correlated with HV, with mean correlations of 0.44 and 0.32 for LMA 

405 and LDMC respectively. However, WD was only significantly correlated with HV in three 

406 species. In the seven eucalypts, most species fell in roughly the same trait space, with more trait 

407 variation within each species than across species (Figure 2). Acacia acuminata showed larger 

408 HV, but similar trait correlations to the seven eucalypts (Figure 2d, 2e, 2f). 

409 Within-species trait coordination only emerged when comparing traits across the most 

410 disparate environments. The distribution of correlation coefficients at smaller spatial scales (e.g. 

411 trait-trait correlations across individuals or branches within a plot, correlations across plots or 

412 individuals within a site) typically had an interquartile range spanning zero for all trait pairs 

413 except LMA-LDMC and HV-LMA (Figure 2g, Table S4). Only when comparing across site 

414 mean trait values did the mean within-species correlation differ substantially from zero for most 

415 trait pairs (Table S4). This decrease in correlation strength at smaller spatial scales was not 

416 purely a result of smaller sampled trait variation, as there was often as much or more trait 

417 variation within plots as across sites, and funnel plots did not show strong relationships between 

418 correlation strength and sampled trait variance except for the relationship between HV and LMA 

419 (Figure S5).

420 Even though trait coordination only emerged across large aridity gradients, the dominant 

421 mode of trait variation in the entire dataset was a coordinated increase in tissue robustness and 

422 HV, both within and among species, likely driven by decreasing water availability. In a PCA of 

423 the entire branch-level dataset, the first principal component (PC1) explained 53% of the total 

424 variance and was loaded reasonably equally with all four traits (Figure 3a). Additionally, for 

425 each species the site-level average PC1 score was strongly related to site PPT and MD,(linear 

426 mixed-effects models, p<0.0007 and 0.004, marginal R2 = 0.51 and 0.53 respectively) though not 

427 site PET. While the slopes differed between species (particularly for the driest eucalypt and the 

428 Acacia) these patterns indicate that the coordinated increase in WD, LMA and LDMC, and HV 

429 represented by PC1 was driven by water availability (Figure 3b). The second trait PC (PC2) 
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430 explained 26% of the variation, was largely unrelated to climate, and primarily differentiated the 

431 seven eucalypts from Acacia acuminata (Figure S6).

432

433 Is trait variation constrained at higher aridity?

434 Evidence for increasingly constrained trait variation at higher levels of aridity was mixed, 

435 both within and among species. Variance decomposition revealed huge variability in the total 

436 amount and dominant scales of within-species trait variation (Figure 4). Variation between plots 

437 in a site was almost always the smallest variance component. The relative contribution of within-

438 tree, within-plot and between-site variation differed drastically, however, depending on the trait 

439 and species (Figure 4). The only exception was the consistently high amount of within-tree 

440 variation in log10-transformed HV, which made up >40% of total trait variation in all species. 

441 Acacia acuminata also tended to have much larger intra-specific trait variation than any of the 

442 sampled eucalypts. Combining all trait data from all seven eucalypt species, within-species trait 

443 variation represented between 31% (WD) and 72 % (log10(HV)) of total trait variation,  and 

444 between-site/climate-related within-species trait variation was over half the magnitude of inter-

445 specific variation in LDMC and log10(HV) (Figure S7).

446 Across species, there was limited evidence for decreased intraspecific trait variation in 

447 more xeric species. In the seven eucalypts, total within-species trait variation was unrelated to 

448 the aridity of a species’ geographic distribution (the median MD of herbarium specimen 

449 locations) for WD, LMA, and LDMC, but was marginally negatively related for LDMC (p=0.11; 

450 Figure 5a-d). Most individual variance components were also unrelated to species aridity niche. 

451 However, the amount of between-site variation was negatively related to species aridity niche for 

452 HV (p=0.001) and marginally for LDMC (p=0.07; Figure 5e-h). Results were similar but slightly 

453 more significant using the species’ dry range edge (90th percentile MD) rather than niche center 

454 (median MD).  Results were also similar using trait coefficients of variation (CV=trait standard 

455 deviation divided by trait mean) rather than trait variances, though the CV of HV was no longer 

456 related to species mean MD but the CV of LMA decreased marginally with MD  (p=0.067, 

457 Figure S8).

458 Within-species, variance patterns moving from wet sites to dry sites also showed mixed 

459 support for decreasing variance with increasing aridity. A few species did show constrained 

460 within-tree and within-plot trait variation at drier sites in a few traits, consistent with an 
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461 increasingly strong environmental filter. However, most species for most traits showed no 

462 change in trait variance across sites (Figure 6).  LDMC showed the most consistent variance 

463 constraint with aridity, with three of eight species showing lower trait variances at drier sites. HV 

464 showed no aridity-related variance patterns in any species (Figure 6). 

465  

466 Discussion

467 Our extensive dataset of 1620 paired trait measurements demonstrated that increasing 

468 aridity resulted in coordinated trait shifts. However, these shifts were only evident across large 

469 aridity gradients. Moreover, despite ubiquitous aridity-related increases in trait means consistent 

470 with high trait values being adaptive, we did not find decreasing trait variances with decreasing 

471 water availability except in LDMC, providing little initial evidence for constrained plasticity or 

472 limited genetic variation. Below, we discuss these results in greater detail.

473

474 Mean trait shifts

475 Shifts in leaf, stem, and allocation traits towards more drought resistant values at drier 

476 sites were ubiquitous across the sampled species (Figure 1). Indeed, within-species trait shifts 

477 due to some combination of local adaptation and plasticity were in the same direction and 

478 sometimes even of the same magnitude as trait relationships across species (Figure S4), 

479 particularly for the driest euclaypt (E salmonophloia) and for the trait HV. These shifts are 

480 consistent with increases in tissue drought tolerance, and indeed all traits but LDMC have 

481 previously been reported to show within-species patterns related to water availability either 

482 geographically or experimentally in eucalypts (Li & Wang, 2003; Schulze et al., 2006; Zolfaghar 

483 et al., 2014; McLean et al., 2014). In Eucalyptus obliqua, geographic variation in LMA and HV 

484 are associated with concurrent changes in physiological traits such as leaf turgor loss point, 

485 xylem vessel wall thickness, and xylem vulnerability to embolism, primarily through plasticity 

486 rather than genetic ecotypic variation (Pritzkow et al. 2019). However, these same traits often do 

487 not show aridity-related variation within-species in other systems (Martinez-Vilalta et al., 2009; 

488 Fajardo & Piper, 2010; Richardson et al., 2013; Laforest-Lapointe et al., 2014; Vilà-Cabrera et 

489 al., 2015; Anderegg & HilleRisLambers, 2015; Rosas et al., 2019). This may be in part due to 

490 the nature of these morphological traits themselves. HV is directly relevant to the water balance 

491 and hydraulic status of a plant (Whitehead & Jarvis, 1981; Trugman et al., 2019), but traits like 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

492 wood density are only partially mechanistically linked to more drought-relevant physiological 

493 traits such as xylem vulnerability to embolism (Lens et al., 2010), and linkages have typically 

494 only been shown among species rather than within species. However, complicated and 

495 inconsistent trait-environment relationships are often found even for more labor intensive plant 

496 hydraulic traits (Rosas et al., 2019).

497 In the literature, it is more common to find changes in only a subset of traits than to find 

498 the consistent trait coordination documented here. The lack of consistent trait-environment 

499 relationships in the literature might be due to fundamentally different capacities of various clades 

500 to adjust different tissue characteristics. For example, it is possible that eucalypts are a taxon 

501 with anomalously large morphological plasticity or adaptability. Indeed, eucalypts have 

502 demonstrated remarkably clean trait-environment patterns within and among species in 

503 numerous studies (Schulze et al., 1998; 2006; Pfautsch et al., 2016; Li et al., 2018a). However, 

504 other methodological causes of the discrepancies in the literature warrant mentioning. 

505 This study was unique in that it explicitly sampled as much of each focal species’ 

506 geographic aridity niche as possible, and because the aridity gradients in Australia are largely 

507 unconfounded by freezing stress. Given that between-site, or climate-related trait variation is 

508 often less than half of total within-species trait variation (Figure 4), sampling as broad of climate 

509 space as possible may be critical to ensure that one can detect the climate signal from the 

510 considerable noise. With the exception of E. obliqua, our collections covered the vast majority of 

511 the precipitation space inhabited by all study species and the bulk of potential evapotranspiration 

512 space (Figure S3). 

513 Additionally, the confounding effect of cold stress may weaken trait-climate relationships 

514 and obscure trait coordination. Morphological traits such as LMA are known to vary with 

515 multiple environmental signals, including water availability, nutrient availability, and cold stress 

516 (Poorter et al., 2009). In our study, none of our sites experienced significant cold stress, though 

517 soil quality and water availability co-varied (Table S1, Figure S2). While some patterns 

518 documented here may be due to changes in nutrient rather than water availability (soil quality or 

519 depth was the best trait predictor in ~1/3 of trait-environment relationships), these stresses tend 

520 to have similar effects on morphology that may reinforce each other in our study. For example, 

521 low nutrient availability and low water availability both tend to increase LMA in isolation 

522 (Poorter et al., 2009). However, in cold temperate study systems, cold stress and low water 
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523 availability tend to have the similar effect of increasing tissue robustness but are negatively 

524 correlated on the landscape. We posit that studies focused on elevational gradients (Fajardo & 

525 Piper, 2010; Anderegg & HilleRisLambers, 2015) and latitudinal gradients (Martinez-Vilalta et 

526 al., 2009) in the cold temperate zones are likely to see confounding effects of cold stress and 

527 drought stress, particularly on leaf traits (González-Zurdo et al., 2016; Niinemets, 2016). If stem 

528 versus leaf allocation (i.e. HV) is less sensitive to cold stress than other morphological traits, this 

529 could explain why HV shows more ubiquitous within-species patterns than other morphological 

530 adjustments, as HV is responding to only a single stress gradient while leaf traits are responding 

531 to the complex interactions between multiple stressors. 

532

533 Trait coordination

534 We found that coordination across leaf, stem, and allocation traits related to aridity was 

535 consistent across species and the dominant mode of trait variation in our study (Figure 2 & 3). 

536 One implication of this coordination is that the effects of water stress are scaled to species 

537 physiology, such that both mesic and xeric species must respond similarly to increasing water 

538 stress at their dry range edge regardless of large differences in total water availability. Our seven 

539 eucalypt species differed in the wetness of their range center by over 1100 mm of moisture 

540 deficit (Figure 5). Yet all of them showed significant trait-by-aridity relationships and trait-trait 

541 coordination. 

542 The consistent trait coordination across leaf, stem, and allocation traits found here is also 

543 reasonably unique in the literature. It is far more common for within-species trait coordination to 

544 show variable and often unexpected patterns (Richardson et al., 2013; Laforest-Lapointe et al., 

545 2014; Anderegg et al., 2018; Messier et al., 2018; Rosas et al., 2019). However, while present in 

546 our entire dataset (Figure 3), trait coordination only emerged at the largest of spatial and 

547 ecological scales (Figure 2g). Indeed, even though variation between branches in a canopy and 

548 between individuals within a plot constituted the majority of trait variation in the majority of 

549 traits and species (25 of 32 species by trait combinations, Figure 4). Despite this, consistent trait 

550 correlations only emerged across site-level trait averages in five of six trait pairs (Table S4). 

551 These large-scale trait correlations suggests that leaf, stem, and allocation traits are at 

552 best weakly mechanistically linked within species. Even when many axes of variation are held 

553 constant by looking only within a species, the potential for compensating trait variation (e.g. 
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554 between roots and leaves) and the important but ultimately weak relationships of many 

555 ‘functional traits’ with either physiological rates or demographic outcomes should make weak 

556 trait-trait relationships the norm and strong coordination the exception in land plants. Moreover, 

557 given that functional traits may respond independently to different environmental stresses 

558 (Anderegg et al., 2018), it should be no surprise that consistent within-species trait coordination 

559 has been so elusive in the literature. 

560

561 Patterns in trait variance

562 In contrast to the ubiquitous patterns in trait means, we found less evidence for consistent 

563 patterns in trait variances with aridity. Looking across the seven eucalypt species (i.e. focusing 

564 primarily on the between species or G component), we found that HV and to a lesser extent 

565 LDMC tended to be more constrained in xeric than mesic species but the same was not true of 

566 LMA and WD. This pattern was more statistically significant for between-site variance than total 

567 variance, suggesting that the component of trait variation controlled by climate was indeed 

568 increasingly constrained at low water availability (Figure 5), perhaps indicating constrained 

569 plasticity in harsh environments (Valladares et al., 2007). However, this pattern only 

570 sporadically scaled down to populations within species (where G, E and GxE effects are 

571 possible), with almost half of species showing marked variance patterns across sites for LDMC, 

572 rare variance constraints in HV, LMA and WD (Figure 6).. LDMC was somewhat unique among 

573 the four traits, showing the most prevalent within-species variance patterns (Figure 6) and 

574 decreasing climate-linked trait variances (Figure 5) and CVs (Figure S8) with aridity across 

575 species. LDMC may therefore be a worthwhile trait to investigate alongside more detailed 

576 physiological measurements in common garden work with Eucalyptus (Bourne et al., 2017) and 

577 other trees.  For other traits, GxE effects (an adaptive increase in plasticity) may maintain 

578 plasticity in dry-adapted populations, as found for LMA in a common garden study of 

579 Eucalyptus tricarpa (L.A.S. Johnson) L.A.S. Johnson & K.D. Hill (McLean et al., 2014).

580 If LMA, WD and HV are under selection in a warming world (which is likely given the 

581 trait-by-aridity relationships within and between species), their variance patterns may be good 

582 news for the adaptive and/or acclimatory potential of these species. The acclimatory potential for 

583 HV may be particularly high, given the consistently high within-tree variation in this trait (Figure 

584 4). Meanwhile, depending on the heritability of WD and LMA, which has often proven to be 
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585 high in angiosperms (Zobel & Jett, 1995; Poorter et al., 2009) and specifically high for WD but 

586 not LMA in C. calophylla (Ahrens et al., 2019a), the reliably high within-plot variation (Figure 

587 4) and lack of variance-by-aridity relationships (Figure 5 & 6) may indicate considerable 

588 adaptive potential. 

589 It should be noted, however, that a likely explanation for both the weak trait coordination 

590 and the mixed variance patterns documented here is that selection is not happening on any of 

591 these four traits directly, but rather on underlying anatomical traits that collectively determine 

592 gross morphology. All four of the studied ‘functional traits’ integrate signals from many different 

593 anatomical attributes that have a multitude of influences on actual physiological function 

594 (Niinemets, 1999; Chave et al., 2009; Poorter et al., 2009; 2011). Thus, it is common for trait 

595 variation in different environments to be driven by disparate anatomical changes that have 

596 drastically different physiological consequences but result in identical trait values (e.g. Baird et 

597 al., 2017). 

598 Within eucalypts, our results might indicate a constraint on the underlying anatomical 

599 properties that drive variation in LDMC and HV, the two traits that did show decreased variance 

600 in xeric species (Figure 5). However, a considerable amount of the total variation in both traits is 

601 non-climatic (Figure 4, Figure S7), making it difficult to detect changes in trait variation at the 

602 population level (Figure 6). This further highlights the importance of understanding the 

603 underlying anatomical drivers of variation of these traits (Niinemets, 1999; Onoda et al., 2017). 

604 The trait-trait and trait-climate relationships documented here are unlikely to prove mechanistic 

605 in the manner necessary for the parameterization of dynamic ‘trait-based’ vegetation models 

606 without gaining a greater understanding of the root causes of this trait variation.

607

608 Conclusion

609 We found consistent and coordinated trait shifts towards drought resistance across the 

610 aridity range of eight tree species. These findings are unique in the literature, in part because we 

611 were able to explicitly sample complete aridity gradients that were not confounded by cold 

612 stress. However, the compound nature of the gross morphological traits we measured resulted in 

613 1) within-species trait coordination that only emerged across the most climatically disparate 

614 individuals in a species and 2) fewer consistent patterns in the size of trait variances with aridity 

615 than between trait means and aridity. Our findings imply considerable capacity for these species 
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616 to adapt and/or acclimate to increasing aridity with future climate change thanks to the 

617 substantial within-species variation in multiple traits that is significantly related to climate. Our 

618 work highlights outstanding questions about the anatomical mechanisms driving functional trait 

619 variation within species, as well as the need to disentangle conflicting effects of different 

620 environmental constraints (e.g. temperature versus nutrient versus water) on trait variation to 

621 develop a multi-scale understanding of plant functional ecology.

622
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859 Figure S6: Trait PC2 versus site MD

860 Figure S7: Variance decomposition across 7 eucalypts

861 Figure S8: Trait CVs versus climate niche

862

863 Figure Legends

864

865 Figure 1: Relationships between four leaf and stem traits and plot mean annual precipitation 

866 (PPT) for eight tree species. Points show tree averages. Red crosses show Acacia acuminata, the 

867 one non-eucalypt species. Trend lines show simple linear regressions of tree averages against 

868 MD for each species. Species abreviations: A. acu – Acacia acuminata, E. sal – Eucalyptus 

869 salmonophloia, E. mar – E. marginata, C. cal – Corymbia calophylla, E. ova – E. ovata, E. vim – 

870 E. viminalis, E. amy – E. amygdalina, E. obl – E. obliqua 

871

872 Figure 2: Correlations between leaf and stem traits across the aridity range of eight tree species 

873 (a-f). Points show tree average trait values, and lines show Major Axis Regressions (solid lines 

874 show significant correlations). Crosses show A. acuminata, the one non-eucalypt species. Trend 

875 lines show SMA regressions per species (n.s. correlations are dashed lines). Numbers in the 

876 upper left corners report the fraction of species showing significant trait-trait correlations with 

877 the range of Pearson correlation coefficients in parentheses. Panel (g) shows the distribution of 

878 correlation coefficients across all species for two example trait pairs, LMA vs WD (black) and 

879 LMA vs LDMC (blue). Trait correlations typically had a mean near zero across branches or 

880 across individuals within a site for all trait pairs except LMA vs LDMC. Species abreviations: A. 

881 acu – Acacia acuminata, E. sal – Eucalyptus salmonophloia, E. mar – E. marginata, C. cal – 
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882 Corymbia calophylla, E. ova – E. ovata, E. vim – E. viminalis, E. amy – E. amygdalina, E. obl – 

883 E. obliqua

884

885 Figure 3: PC loadings of a PCA including all branch measurements (a). Site average trait PC1 

886 scores are strongly related to site moisture availability across eight tree species (b). PET = 

887 potential evapotranspiration, PPT = precipitation. Trend lines show SMA regressions per 

888 species. Species abreviations: A. acu – Acacia acuminata, E. sal – Eucalyptus salmonophloia, E. 

889 mar – E. marginata, C. cal – Corymbia calophylla, E. ova – E. ovata, E. vim – E. viminalis, E. 

890 amy – E. amygdalina, E. obl – E. obliqua

891

892 Figure 4: Variance decomposition of WD (a), LMA (b), LDMC (c), and log10-transformed HV 

893 (d) measured across the aridity range of eight tree species. Colored bars show proportion of total 

894 trait variance (“% trait Var”) while gray bar shows absolute amount of variance per species (“Tot 

895 trait Var”). The amount and dominant scale of trait variance differs considerably between species 

896 for the same trait and between traits. However, variation between plots at a site was almost 

897 universally the smallest variance component for all traits and species. Within-tree variation was 

898 also always larger for log10-transformed HV than for all other traits. Species are ordered from 

899 driest on the left to wettest on the right. Species abreviations: A. acu – Acacia acuminata, E. sal 

900 – Eucalyptus salmonophloia, E. mar – E. marginata, C. cal – Corymbia calophylla, E. ova – E. 

901 ovata, E. vim – E. viminalis, E. amy – E. amygdalina, E. obl – E. obliqua

902

903 Figure 5: The total amount of within-species trait variation (top row) and individual variance 

904 components (bottom row, variance components multiplied by 100 for axis labels) of WD (a,e), 

905 LMA (b,f), LDMC (c,g) and log10(HV) (d,h) of seven eucalypt species (excluding A. acuminata) 

906 were rarely related to species aridity niche (here shown as the median moisture deficit of each 

907 species’ geographic distribution based on occurrence records in the Atlas of Living Australia). 

908 Total trait variation in HV decreased marginally significantly in drier species, and climate-

909 related (between site) trait variation in LDMC and HV decreased significantly in drier species, 

910 consistent with environmental filtering limiting constraining trait variation. Solid lines indicate 

911 significant trends (alpha<0.05), dashed lines indicate near significant trends (0.15<alpha<0.05).

912
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913 Figure 6: Summary of within-species variance patterns. Few of the seven eucalypt and one 

914 Acacia species showed evidence of decreasing trait variation (red) at dryer sites, with even 

915 LDMC (the trait in which this pattern is most prevalent) showing decreases in only 37.5% of 

916 species and increases in 12.5% of species.  “Non-aridity” signifies species that showed 

917 significant site-to-site differences in trait variance that could not be explained by site aridity. 
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